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Abstract

Alfv�en-cyclotron 
uctuations propagating parallel or antiparallel to the background

magnetic �eld Bo help shape solar wind ion velocity distributions fi(v). Alfv�en waves

may be generated at low, nonresonant frequencies and, by propagation through the in-

homogeneous plasma, attain ion cyclotron resonances and thereby scatter the fi(v) to

anisotropy. Ion anisotropies of suÆcient magnitude lead to the growth of ion cyclotron in-

stabilities; the resulting enhanced Alfv�en-cyclotron 
uctuations scatter ions so as to reduce

the anisotropy. Here particle-in-cell simulations were carried out in a magnetized, homo-

geneous, collisionless plasma of electrons and one species of ions to study the evolution of

the fi(v) in response to both of these scattering processes. A simulation with a spectrum

of right-traveling Alfv�en-cyclotron 
uctuations imposed at t = 0 leads to non-Maxwellian

ion distributions. The computations show that the pitch-angle scattering of left-traveling

(vk < 0) ions becomes weaker as vk becomes less negative, but also that this scattering

can transport ions across the condition vk = 0, where the subscript denotes the direction

parallel to Bo.

1. Introduction

There have been many measurements of ion anisotropies such that T? > Tk in both

the solar corona and the solar wind (Here and throughout this manuscript ? and k denote

directions relative to the background magnetic �eld Bo.). Ion anisotropies in the corona

inferred from remote sensing observations were carefully reviewed by Hollweg and Isenberg

[2002]. Solar wind in situ measurements of the proton anisotropy T?p=Tkp > 1 have been

reported primarily in the fast wind and include Bame et al., 1975; Marsch et al., 1982a;

Feldman et al., 1996 and Neugebauer et al., 2001.

Collisionless wave-particle scattering by Alfv�en-cyclotron 
uctuations is a possible

explanation for these anisotropies. Although there are no direct observations of Alfv�en
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waves in the corona, large-amplitude, low frequency Alfv�enic 
uctuations are observed to be

ubiquitous in the solar wind [Coleman, 1968; Goldstein et al., 1994]. In particular, Marsch

and Tu [2001] and Tu and Marsch [2002] have demonstrated proton velocity distributions

observed from the Helios spacecraft which exhibit anisotropies consistent with pitch-angle

scattering by Alfv�en-cyclotron waves propagating away from the Sun.

A substantial body of theory has addressed the wave-particle interactions between

Alfv�en 
uctuations and ions in the solar corona and/or the solar wind [Marsch et al.,

1982b; Isenberg and Hollweg, 1983; Hollweg and Johnson, 1988; McKenzie, 1994; Tam

and Chang, 1999; Li et al., 1999; Hollweg, 1999a, 1999b, 2000; Cranmer, 2000, 2001; Tu

and Marsch, 2001; Isenberg et al., 2001; Isenberg, 2001, 2003; Vocks and Marsch, 2001,

2002; Vocks, 2002; Gary et al., 2001a]. The common scenario for many of these theories

is that low frequency, nonresonant Alfv�enic 
uctuations are generated at the coronal base

and perhaps throughout the corona [Cranmer et al., 1999]; as they propagate upward,

the decreasing magnetic �eld leads to wave-particle interactions at cyclotron resonances of

successively larger charge-to-mass ratio ions. The resulting pitch-angle scattering drives the

resonant ions to larger values of v?, thereby presenting an explanation for the observations

of T?i > Tki.

Whatever the source, if the T?=Tk of any ion species becomes suÆciently large, it

will excite an electromagnetic ion cyclotron anisotropy instability. It is well established,

through both solar wind observations [Gary et al., 2001b, 2002, 2003] and simulations

[Gary et al., 1997, 2000, 2001a; Ofman et al., 2001], that the resulting short wavelength,

enhanced 
uctuating �elds scatter the driving ions and reduce or at least constrain the

driving ion anisotropies. We here examine the e�ects on the ion velocity distribution fi(v)

of wave-particle scattering by both an imposed spectrum of Alfv�en-cyclotron 
uctuations

and by the spontaneously growing waves of the ion cyclotron instability.

We de�ne the average parallel 
ow speed of the jth species as

voj �
1

nj

Z
d3v vk fj(v):

We also de�ne two kinetic energy densities of the jth species:

Wkj �
mj

2

Z
d3v v2k fj(v)

and

W?j �
mj

4

Z
d3v v2? fj(v)

If the velocity distribution becomes bi-Maxwellian, then Tkj = 2Wkj=nj and T?j =

2W?j=nj . Other jth species quantities used here include �kj � 8�njkBTkj=B
2
o
; the plasma

2



frequency, !j �
q
4�nje

2
j
=mj ; the cyclotron frequency, 
j � ejBo=mjc; and the thermal

speed, vj �
p
kBTkj=mj . The Alfv�en speed is vA � Bo=

p
4�nemp.

2. Simulation Code

We used a two-and-one-half-dimensional (spatial variations in x and y, velocity vari-

ations in all three components) particle-in-cell electromagnetic simulation code [Buneman,

1993] to compute the results described in the following sections. We consider a collisionless,

magnetized, homogeneous plasma and choose Bo = x̂Bo. Our concern here is scattering

by 
uctuations which propagate at k�Bo = 0, so we use a con�guration in which the

system dimensions are Lx = 760 � and Ly = 10 �, where � is the cell size. The par-

ticle number density for each species is about 100 per cell, and the integration time step

is 
i�t = 1:4 � 10�3. Periodic boundary conditions are imposed on both particle and

�eld quantities in both the x- and y-directions. For both of our simulations, the electrons

are initially Maxwellian, the initial electron temperature is equal to the ion temperature

parallel to Bo, the initial ion beta is �ki = 0.05, the ion skin depth is c=!i = 40�, and the

ion Debye length is vi=!i = �. The ion to electron mass ratio is mi=me = 16.

Although we use an arti�cially small ion/electron mass ratio in our simulations, we

subsequently use the term \proton" (subscript p) to refer to the ions, implying that we

are studying only the majority ion species. Of course, there is much additional physics

involved in the wave-particle interactions of Alfv�en-cyclotron 
uctuations and instabilities

with minor, heavy-ion species of the corona and solar wind [e.g., see the recent simula-

tions of Liewer et al., 2001; Ofman et al., 2002; Gary et al., 2003], but such a study is

beyond the purview of the present manuscript. At the minimum, our model of a single

ion species should apply to protons in the corona and solar wind whenever the heavy

ions are nonresonant. This condition arises, for example, when heavy-ion/proton relative


ow speeds vip satisfy vip >� 0:5vA. Under this condition, the exchange of energy between

Alfv�en-cyclotron 
uctuations and the heavy ions becomes weak. This is true whether the


uctuations arise locally from the electromagnetic proton cyclotron anisotropy instability

(hereafter simply the \proton cyclotron instability") [e.g., Fig. 7 of Gary et al., 2003], or

are imposed from some nonlocal source [e.g., Fig. 5 of Gary et al., 2001c].

3. Proton Cyclotron Instability

This section describes the evolution of the proton velocity distribution under the in-


uence of enhanced �eld 
uctuations generated by the proton cyclotron instability driven

by a suÆciently large T?p=Tkp > 1. Its properties as derived from linear theory in a

plasma with protons as the only ions are summarized in Gary [1993]; the growing modes

propagate with left-hand polarization, with maximum growth rate at k�Bo = 0 and at

frequencies somewhat below the proton cyclotron frequency. If, as we assume here, fp(v)
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is gyrotropic and symmetric in vk [that is, fp(vk; v?) = fp(�vk; v?)], the enhanced 
uc-

tuations from instability growth also exhibit a right-left symmetry. That is, 
uctuations

propagating parallel to Bo (!r=kk > 0), will have the same growth rate 
(kk) and polar-

ization as 
uctuations propagating antiparallel to the background magnetic �eld (!r=kk <

0). These symmetry properties imply that the consequences of wave-particle scattering by

the resulting enhanced 
uctuations should preserve the right-left symmetry of the velocity

distribution, and our simulations indeed demonstrate that this is the case.

Beyond this expected symmetry, however, we ask a more detailed question: If we

begin our simulations with a bi-Maxwellian fp(v), will its bi-Maxwellian character be

preserved as the 
uctuations become enhanced and the temperature anisotropy T?p=Tkp

is reduced? Our previous analyses of the proton cyclotron instability indicated a pos-

itive answer to this question [Gary et al., 1996, 1997]. However, those analyses were

based primarily on reduced velocity distributions, which are one-dimensional in character.

Pitch-angle scattering by Alfv�enic 
uctuations involves an exchange of charged particle

velocities between vk and v?, which is a two-dimensional velocity space process. Thus it

is appropriate to re-examine this question using two-dimensional diagnostics.

We carried out a simulation of the proton cyclotron instability using the parameters

described in Section 2, including the initial value of �kp = 0.05. The initial proton veloc-

ity distribution was taken to be a bi-Maxwellian with an initial temperature anisotropy

T?p=Tkp = 10.3. Under such initial conditions, linear Vlasov theory predicts that the pro-

ton cyclotron instability arises with maximum growth rate 
m=
p = 0.20. With the given

simulation box size of Lx!p=c = 19, linear theory also predicts that �ve modes should have

growth rates 
=
p > 0.10, implying that there should be a broad spectrum of enhanced

Alfv�en-cyclotron 
uctuations to scatter the protons.

Figure 1 shows (a) the total 
uctuating magnetic �eld energy density and (b) the

associated proton temperature anisotropy, both as functions of time, for this simulation.

The results are the same as for hybrid simulations of this growing mode [Gary et al, 2000];

the 
uctuating magnetic �elds grow rapidly to saturation, and T?p=Tkp is rapidly reduced

to a value which corresponds to an instability threshold of weak growth.

Figure 2 shows contours of constant phase space for fp(vk; vy) at four times: 
pt =

0, 22.4 (midway through the exponential growth of the instability), 40 (near saturation

of the 
uctuating �elds), and 56 (the end of the simulation). During instability growth

the distribution is clearly distorted from its initial bi-Maxwellian shape; the cyclotron

resonant particles at relatively large v? have just begun their pitch-angle migration to

larger values of vk. But by the time of saturation, the response of the particles scattered

by the fastest growing waves is essentially complete and the distribution has returned to a

bi-Maxwellian-like shape. At times well after saturation, the scattering continues weakly,

but the bi-Maxwellian shape is approximately maintained.
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Figure 3 presents two comparisons of velocity distributions which allow a more quan-

titative analysis of the scattered fp(v). Figure 3(a) illustrates the di�erence between the

fp(v) at late simulation time and a theoretical bi-Maxwellian distribution where T?p=Tkp =

3.2 is chosen to yield the best match with the simulation result. The di�erence is primarily

statistical noise, con�rming that the simulated distribution is close to a bi-Maxwellian over

the full range of thermal speeds. We regard this result as con�rming our earlier conclusion

that scattering by a broad spectrum of enhanced 
uctuations from the proton cyclotron

instability will retain the bi-Maxwellian character of an anisotropic velocity distribution,

even as that scattering acts to reduce that anisotropy.

Panel (b) shows how that anisotropy is reduced, illustrating the di�erence between

fp(vk; vy) at 
pt = 56 and fp(vk; vy) at t = 0. This shows that scattering by enhanced


uctuations from the instability moves particles from smaller vk to larger vk, exactly the

response expected for pitch-angle scattered protons. This �gure also shows that the proton

response is indeed symmetric in vk = 0, just what we expect for scattering by an ensemble

of 
uctuations which propagate both parallel and antiparallel to Bo.

4. Imposed Fluctuations

This section describes results from our study of the proton velocity distribution as

it evolves in a simulation in which an electromagnetic 
uctuation spectrum at k�Bo = 0

is imposed at t = 0. The initial magnetic �eld 
uctuation spectrum is

ÆB(x; t = 0) =

5X
n=1

ŷ ÆBnsin(�knx+ �n) + ẑ ÆBncos (�knx+ �n) (1)

with k = kk understood throughout this section and mode parameters as stated in Table

1. The last column of this table states the complex frequency !(k) = !r + i
 which

is obtained from the solution of the linear Vlasov dispersion equation [e.g., Gary, 1993]

for left-hand polarized electromagnetic 
uctuations at k�Bo = 0 and �kp = 0.05. The

spatially homogeneous part of the initial proton and electron velocity distributions in the

simulation are isotropic and Maxwellian. A spatially inhomogeneous part is added to the

initial proton velocity distribution to assure that it is self-consistent with Equation (1).

Our application of magnetic 
uctuations emulates the procedure of Liewer et al.

[2001], who imposed an initial spectrum of Alfv�en waves on a spatially homogeneous sim-

ulation, rather than that of Ofman et al. [2002], who drove a magnetic power spectrum in

a small region of the computational domain throughout the duration of their simulations.

We believe that the former procedure is a more realistic representation of solar wind con-

ditions, for the following reason. Under the scenario outlined in the Introduction, there

are two processes involved in the transfer of wave energy to solar wind ions. First is the

migration of magnetic 
uctuation energy from long, nonresonant wavelengths to shorter,
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Table 1. Initial Fluctuation Spectrum: Parameters

n ÆBn knc=!p �n !(Alfv�en)=
p

1 0.0357 1.00 0.0 0.560 �i0.014

2 0.0357 1.25 1.11� 0.594 �i0.057

3 0.0357 1.50 0.88� 0.619 �i0.119

4 0.0357 1.75 0.66� 0.640 �i0.192

5 0.0357 2.00 1.11� 0.658 �i0.273

cyclotron resonant wavelengths. Second is the absorption of wave energy by cyclotron

damping on the ions. The former process proceeds, on average, at about the solar wind

expansion rate. The latter process proceeds at a variable rate; the faster wave energy

is pumped to the cyclotron resonant wavenumbers, the deeper that spectrum penetrates

to shorter wavelengths and, as is clear from Figure A.1, the faster the damping. Thus

in steady state, the overall rate of energy 
ow is determined by the slower rate, that is,

the migration of energy in wavenumber. Thus the rate of 
uctuating �eld energy 
ow

to the cyclotron resonance must be orders of magnitude smaller than the damping rates

illustrated in Table 1, and any simulation of an imposed magnetic 
uctuation spectrum

should not replenish that wave energy on any time scale faster than about 104=
p.

All modes of Equation (1) have negative helicity; that is, they have a right-hand

sense of rotation in the direction of k. This means that they may excite both left-hand

polarized Alfv�en-cyclotron waves which propagate parallel to Bo (i.e., with !r > 0) as well

as right-hand polarized magnetosonic/whistler waves which propagate antiparallel to the

background magnetic �eld with !r < 0. Linear Vlasov dispersion theory predicts that, for

the wavenumbers of Table 1, the right-hand polarized waves all correspond to j!rj > 
p

and are undamped at the low �p used here, so that they should not contribute to resonant

wave-particle interactions in this simulation. In contrast, linear Vlasov theory predicts

that the left-hand polarized 
uctuations are cyclotron resonant with the protons, and have

substantial damping as indicated by Table 1.

Figure 4(a) shows the time history of the 
uctuating magnetic �eld energy density

from this computation. During the �rst proton cyclotron period (0 � 
pt <� 2�), there

is relatively rapid damping of the 
uctuations, after which the 
uctuating �eld energy

settles down to a relatively constant value for the remainder of the simulation. Panel (b)

illustrates the time history of the parallel and perpendicular proton kinetic energies for

this simulation. There is a relatively modest increase in W?p and a corresponding modest

decrease in Wkp during the time of magnetic �eld energy decrease. This is the response
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we expect for the protons subject to a spectrum of Alfv�en-cyclotron 
uctuations. At the

time of maximum scattering, W?p=Wkp = 2.1; if the distributions were approximately bi-

Maxwellian, the corresponding temperature anisotropy would not be suÆciently large to

excite the proton cyclotron instability. We have also calculated the average proton parallel


ow speed vop as a function of time. There is no appreciable change in this quantity:

-0.001 <� vop=vp < 0.002 throughout the simulation.

Figure 5 illustrates the proton velocity distribution at 
pt = 0, 5.6, 11.2, and 16.8;

the scattered fp(v) are clearly not bi-Maxwellian. Pitch-angle scattering of the protons

at vk < 0 by the right-traveling Alfv�en-cyclotron waves is evident, but the absence of any

clear increase of the distribution width at vk > 0 again indicates that the proton cyclotron

instability has not been excited in this case.

Figure 6 illustrates the proton velocity distribution at 
pt = 56.0, with the phase

speeds of the �ve modes from Table 1 indicated by dots on the right-hand side of the illus-

tration. The decreasing values of !r=k with increasing kc=!p correspond to the increasing

dispersion of the modes as they encounter a successively stronger proton cyclotron reso-

nance (see Figure A.1). The dots on the left-hand side of the �gure represent vk solutions

of Equation (A.1) with ! = !r for the same �ve modes of Table 1. If, as is assumed by

some theories, contours of constant phase space density should develop along the trajecto-

ries of pitch-angle scattered ions, we should �nd a correspondence between the two. Using

the prescription of Isenberg and Lee [1996], the Appendix describes our calculation of such

trajectories for the spectrum of Table 1. The thick solid lines represent trajectories which

are solutions of Equation (A.6); that is, they show the velocity space paths of protons

which are pitch-angle scattered by the succession of waves stated in Table 1.

There is a good match between the solid lines and the simulated contours of constant

phase space at relatively small v?. This agreement indicates that pitch-angle scattering is

complete over a signi�cant range of these trajectories. However, the simulated distribution

contours fall away from the theoretical curves as vk becomes less negative, implying that the

pitch-angle scattering becomes weaker as vk approaches zero. This supports the hypothesis

that pitch-angle scattering is the primary consequence of wave-particle interactions in our

simulation.

There is another important di�erence between our simulated distributions and the

proton velocity distributions assumed in the ion heating theory of Isenberg et al. [2001]

and Isenberg [2001; 2003]. In that theory, Equation (A.2) with ! = !r is taken to be the

proton cyclotron resonance condition, so that if k is assumed positive, then the condition

vk = 0 represents the boundary between two distinct regimes. That is, for electromagnetic

cyclotron 
uctuations with !r < 
p, this condition separates the protons at vk < 0 which

resonate with 
uctuations at !r=k > 0 from the protons at vk > 0 which resonate with


uctuations at !r=k < 0. The results of the theory then depend critically on how ions
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are transported across the vk = 0 plane (Compare Isenberg [2001] with Isenberg [2003]).

The vk = 0 condition plays a similar, important role in the ion cyclotron heating theory

of Hollweg [1999b, 2000].

Our simulated fp(v) do not indicate any such radical change in the physics at vk =

0. A comparison of our Figure 6 with, for example, Fig. 2 of Isenberg [2001] shows very

similar shapes at negative parallel velocities, but major di�erences at vk � 0. In particular

our contours of constant phase space density are not only continuous across vk = 0 but have

continuous derivatives across this transition. The observed distributions of Marsch and Tu

[2001] and Tu and Marsch [2002], as well as all observed velocity distributions of which we

are aware, exhibit the same properties. Figure 6 suggests that the pitch-angle scattering

which shapes the left-hand side of the fp(v) also carries a limited number of particles to

the right-hand side, giving rise to the peculiar \pips" ("PItch-angle ProtuberanceS") on

the distribution at 0 < vk=vp << 1 and 1 < v?=vp.

How can this violation of a fundamental assumption of the Isenberg and Hollweg

theories occur? The answer rests with the context of Equation (A.1); in kinetic theory,

! is a complex variable with a non-zero imaginary part, especially for waves which are

cyclotron resonant. In the linear and weakly nonlinear Vlasov theories of electromagnetic


uctuations at k�Bo = 0, the e�ectiveness of the species j cyclotron resonance is derived

from a velocity space integral which includes a contribution which we call the \resonance

factor"

Rj(vk) �

j

kvk � ! +
j

(2)

[See, for example, the linear conductivity of Eq. (5.1.14) in Gary, 1993]. The imaginary

part of this factor determines the part of fp(vk) which contributes to both linear damping

of the waves and second-order scattering of those particles [e.g., Gary and Tokar, 1984],

including the pitch-angle scattering considered here.

In the limit of zero damping, the imaginary part of Rj(vk) becomes a delta function.

In this case the fundamental assumption of Isenberg [2001, 2003] that ions are not pitch-

angle scattered across vk = 0 is valid. However, at zero damping there is no transfer of

energy from the waves to the particles, and pitch-angle scattering of thermal particles is

very weak or negligible. Only if 
 6= 0 is there signi�cant wave-particle energy transfer,

but in this case the resonance factor has a non-zero width which increases as j
j becomes

larger. It is precisely the �nite width of Rj(vk) which allows some particles to be pitch-

angle scattered to vk > 0 and to create the \pips" illustrated in Figures 5 and 6.

Figure 7 illustrates the resonance factor for each of the �ve modes of Table 1, showing

how this factor becomes broader with increasing wavenumber and increasing damping rate.

The gradual decrease in the amplitudes of these Rj as vk changes from negative to positive

values further supports our twin conclusions that pitch-angle scattering becomes weaker
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as vk becomes less negative but that this scattering can nevertheless still transport ions

across vk = 0.

5. Conclusions

We have used particle-in-cell computer simulations of collisionless plasmas to study

the shaping of proton velocity distributions by wave-particle interactions with Alfv�en-

cyclotron 
uctuations. Our �rst simulation con�rmed that wave-particle scattering by a

broad spectrum of waves from the proton cyclotron instability maintains the initially bi-

Maxwellian character of the proton velocity distribution. Our second simulation demon-

strated the non-Maxwellian properties of fp(v) which arise from pitch-angle scattering by

an imposed spectrum of Alfv�en-cyclotron 
uctuations at k�Bo = 0. Two important con-

clusions from the latter simulation are, �rst, that pitch-angle scattering becomes weaker

as vk becomes less negative and, second, that this scattering can move protons across the

vk = 0 condition. Inclusion of these results into the theory of Isenberg [2003] might lead

to changes in the conclusions of that paper.

Our results suggest several topics which might be addressed by extensions of these

computations. First, the spectrum of Alfv�en-cyclotron 
uctuations initially imposed on the

system should be varied, using di�erent choices of initial modes and initial wave amplitudes,

as in Ofman et al. [2002]. One goal of this exercise should be to determine the modes

which are most e�ective in scattering protons; long wavelength modes are nonresonant, and

short wavelength modes are very strongly damped, so we expect some intermediate value

of kc=!p to be most eÆcient. Another goal of this exercise should be to �nd the wave

amplitudes necessary to excite unstable modes, whether these modes are driven by the

overall T?p > Tkp or by the local (in velocity space) pips, and what are the velocity space

consequences of scattering by these instabilities. Second, the initial waves imposed on the

system could be generalized to include magnetic 
uctuations propagating oblique to Bo; in

these cases the Landau resonance at vk = !r=kk becomes e�ective, and both electrons and

protons can participate in the wave-particle interactions. Third, the initial particle velocity

distributions could be generalized to include heavy ions such as alpha particles as a minority

species. Such a computation could be used to test the predictions that a spectrum of Alfv�en


uctuations at long wavelengths will cyclotron damp upon and thereby preferentially heat

the alphas if the alpha/proton relative 
ow is relatively small, but that if the alpha/proton

relative 
ow becomes an appreciable fraction of vA, the alpha cyclotron damping becomes

weak, and proton cyclotron damping at shorter wavelengths becomes the dominant wave-

particle process. Finally, an ensemble of magnetosonic/whistler 
uctuations propagating

at k�Bo = 0 could be imposed on the system; linear theory [Gary, 1999; Stawicki et al.,

2001] predicts that such waves are subject to appreciable proton cyclotron damping at

�p >� 2.5. We expect that such damping will also drive a proton anisotropy of the type
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T?p > Tkp, although the velocity space details may be di�erent from that due to the Alfv�en-

cyclotron 
uctuations illustrated here. Except for the second, each of these activities

address wave-ion interactions and could be executed through the use of hybrid simulations

which represent electrons as a 
uid, rather than the full particle-in-cell simulations used

here.

Appendix

If a charged particle is pitch-angle scattered by an electromagnetic 
uctuation at

k�Bo = 0 with complex frequency ! and k = B̂ok, then the trajectory of that particle

should satisfy both the cyclotron resonant condition

! � kvk = +
p (A:1)

and the condition of kinetic energy conservation in the wave frame

(vk � !r=k)
2 + v2? = constant (A:2)

If the pitch-angle scattering is due to a spectrum of waves with constant phase speed,

say, vA, then the (vk; v?) trajectory of such a particle follows immediately from Equation

(A.2). This case, however, has limited applicability to the scattering of thermal particles,

because the cyclotron resonances for such particles typically lie in strongly dispersive and

damped regimes, as illustrated in Figure A.1.

A procedure for calculating the (vk; v?) trajectory for a charged particle pitch-angle

scattered by a spectrum of waves with phase speeds which vary with wavenumber has been

given by Isenberg and Lee [1996]. The appropriate equation is

v2k + v2? � 2

Z
vk !r(v

0
k)

k(v0k)
dv0k = constant (A:3)

where the vk dependence of the frequency and wavenumber under the integral are de-

termined by the simultaneous solution of Equation (A.1) and the dispersion equation for

!r(k). Isenberg and Lee [1996], as well as Isenberg [2003], assume a cold plasma dispersion

equation, enabling a closed-form analytic solution of Equation (A.3). Here we pursue a

somewhat di�erent approach to the solution of (A.3).

We begin with the fully thermal dispersion equation solution for Alfv�en-cyclotron


uctuations at k�Bo = 0 in a collisionless plasma. For Maxwellian protons and electrons,

the exact numerical result at �p = 0.05 is illustrated in Figure A.1, where the �ve vertical

arrows indicate the �ve modes applied as initial conditions to the simulation described in

Section 4. For the wavenumber range of these modes, 1.0 <� kc=!p <� 2.0, the mode is

highly dispersive; if we assume a solution of the form

!r


p

= �1 + �2
kc

!p
(A:4)
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a least-squares �t to this k-range yields �1 = 0.47 and �2 = 0.09. The reader will note

that this does not yield conventional Alfv�en dispersion in the long-wavelength limit; our

response is that we are not concerned with that limit because those 
uctuations yield only

weak scattering of the thermal particles.

We combine Equation (A.1) with ! = !r and Equation (A.4) to obtain

k(vk)c

!p
=

(1� �1)

(�2 � vk=vA)
(A:5)

We substitute the frequency of Equation (A.4) and the wavenumber of Equation (A.5) into

Equation (A.3) and carry out the integral to obtain

v2?
v2
A

+
1

(1� �1)

v2k

v2
A

�
2�2

(1� �1)

vk

vA
= constant (A:6)

Solutions of this equation for �1 = 0.47 and �2 = 0.09 and di�erent values of the constant

are plotted as the heavy solid lines in Figure 6.
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Figure Captions

Figure 1. Results from the simulation of the proton cyclotron instability described in

Section 3. Panel (a) shows the 
uctuating magnetic �eld energy density, and panel (b)

illustrates the proton temperature anisotropy, both as functions of time.

Figure 2. Proton velocity distributions from the simulation of the proton cyclotron

instability described in Section 3. The four panels represent fp(vk; vy) summed over all x

at the four stated times.

Figure 3. Results from the simulation of the proton cyclotron instability described

in Section 3. Panel (a) shows the di�erence between fp(vk; vy) at 
pt = 56 and a bi-

Maxwellian velocity distribution with T?p=Tk =3.2. Panel (b) shows the di�erence between

fp(vk; vy) at 
pt = 56 and fp(vk; vy) at t = 0.

Figure 4. Results from the simulation described in Section 4, in which the magnetic


uctuation spectrum of Equation (1) with parameters as given in Table 1 has been imposed
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at t = 0. Panel (a) illustrates the time history of the 
uctuating magnetic �eld energy

density normalized to the initial value of that quantity. Panel (b) shows the time history

of the dimensionless Wkp and W?p.

Figure 5. Proton velocity distributions from the simulation described in Section 4. The

four panels represent fp(vk; vy) summed over all x at the four stated times. There are no

major changes in the fp(vk; vy) at subsequent times.

Figure 6. The proton velocity distribution fp(vk; vy) at 
pt = 56.0 from the simulation

described in Section 4. The phase speed (!r=kk) of the �ve left-hand polarized modes

given in the right-hand column of Table 1 are indicated by �ve dots at v? = 0 and vk >

0. The �ve dots at v? = 0 and vk < 0 represent the corresponding cyclotron resonant

velocities, that is, solutions of Equation (A.1) with ! = !r and kk as given in Table 1.

The �ve corresponding solutions of Equation (A.6) are indicated by solid heavy lines.

Figure 7. The proton resonance factors of Equation (2) for the �ve modes of Table 1

as functions of the proton velocity parallel to Bo.

Figure A.1. The real frequency (solid line) and damping rate (dotted line) as functions

of the wavenumber for the Alfv�en-cyclotron wave at �p = 0.05. The dashed line represents

the real frequency of the dispersionless Alfv�en wave !r = kvA. The �ve vertical arrows

point to the frequencies of the �ve modes given in Table 1.
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